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Nomenclature

A = Aspect ratio

c = Specific heat, J/kg – K

Da = Darcy number

dΓ = Boundary of integration
dΩ = Volume of integration
g = Acceleration due to gravity, m/s2

H = Height of the cavity, m
K = Permeability of porous medium, m2

k = Thermal conductivity, W/m – K
km = Equivalent thermal conductivity of

porous medium [Φkf + (1 – Φ)ks],
W/m – K

Lref = Reference length [ro – ri], m
Nu = Local Nusselt number
Nu
––

= Average Nusselt number
P
–

= Pressure, N/m2

P = Non-dimensional pressure

Pr = Prandtl number

q = Constant heat flux, W/m2

Ra = Rayleigh number

for constant wall
temperature case

for constant wall heat
flux case

Ra
––

= Modified Rayleigh number (for
constant wall ∆T case)
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Introduction
Heat transfer by natural convection in a porous medium saturated with a fluid
represents an area of rapid growth in contemporary heat transfer research.
This has several important geophysical and engineering applications such as
regenerative heat exchangers containing porous material, heat transfer through
double walls filled with fibrous or granular insulation, heat transfer in grain
storage installations, burying of drums containing heat generating chemicals in
the earth, etc. Most of the significant analytical and numerical investigations
carried out earlier on heat transfer in porous media[1-9] were based on the
Darcy flow model, according to which the volume averaged velocity in a
particular direction is proportional to the net pressure gradient in that direction.
However, when permeability of the porous medium is high, Darcy law does not
yield correct results and has to be modified modified appropriately. One such
modification is the Brinkman extension, which accounts for the transition from
Darcy flow to a highly viscous flow (without a porous matrix) in the limiting
condition of extremely high permeability.

Chan et al.[10] were probably the first to use Brinkman extension to Darcy
law. Their results show that for Da < 10–3, the Brinkman extended equation and
Darcy law give the same result. However, the range of Ra considered by them is
too low (<300) to bring out the effect of permeability properly. Tong and
Subramaniam[11] used modified the Oseen method to solve the boundary layer
equations in a non-Darcy regime. They defined a parameter

Ra* = Modified Rayleigh number (for
constant q case)

r = Radius of annulus, m
T
–

= Temperature, K
U = Non-dimensional velocity
U
–

= Velocity, m/s
X = Co-ordinate axis

Greek
α = Thermal diffusivity of porous medium

β = Volumetric coefficient of expansion
w.r.t. temperature, K–1

∆T = Reference temperature difference, K
Φ = Porosity of the matrix

κ = Radius ratio

ν = Kinematic viscosity of fluid, m2/s
ρ = Mass density, kg/m3

σ = Coefficient in energy equation

τ = Non-dimensional time 

τ– = Time, s

Subscripts
1 = Vertical direction
2 = Horizontal direction
i = Inner wall
f = Fluid
o = Outer wall
s = Solid

Superscripts
* = Fictitious or pseudo (only in case of

velocities)
n = Present time-step (nth time-step)
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E < 10–4 which fixes the limit for Darcy regime. A numerical verification of
their results was later carried out by Lauriat and Prasad[12]. Sen[13] also
included the convective terms in the equations but found that the effect is
negligible. He showed that for an aspect ratio of 0.1, the Brinkman model and
the Darcy flow model give virtually the same results when Da based on depth is
less than 10–4. Vasseur et al.[14] considered steady-state natural convection in a
shallow porous cavity with uniform heating and cooling through opposite
walls. Approximate solutions were obtained by assuming parallel flow in the
core region and numerical solutions were obtained using the finite difference
method. Da considered by them was 10–7 to 10–2 (based on depth) and Ra* was
10 ≤/Ra* < 8 × 104 (based on depth). Aspect ratios of 0.33 and 0.25 (according to
the present notation) were considered. They observed that, though Nu

––
increases

with Ra*, it asymptotically reaches a constant value which depends on Da.
They also stated that aspect ratio (A) is not a parameter of influence if it is less
than 0.5. Vasseur et al.[15] also documented flow and heat transfer
characteristics in an inclined porous medium with uniform heating and cooling
through opposite sides. Again a shallow cavity (A = 0.25) was used. Thus, their
analyses were basically confined to non-Darcy behaviour in shallow enclosures
with uniform heating on the opposite walls.

Another modification is the addition of a Forchheimer term[16], which
accounts for the non-linear drag as pore diameter increases. However, neither of
these models adequately accounts for the transition from porous medium flow
to a pure fluid flow as permeability of the medium increases. So a model which
also takes into consideration the flow inertia terms serves this purpose.
However, a somewhat recent study[17] shows that the inclusion of the inertia
term is of no consequence and it only adds to the computational cost. However,
it is preferable to retain this term when the model is intended to bridge the entire
domain between low and high permeabilities. In the literature one comes across
a model that includes not only the inertia terms but also both the Brinkman and
Forchheimer extensions[18,19]. However, the validity of such a formulation has
been questioned by Nield and Bejan[20]. In order for the Brinkman equations to
be valid, the porosity must be high, and there is some uncertainty about the
validity of Forchheimer’s law at large porosities. So in the present study, a model
that contains the inertia terms and the Brinkman extension along with the
Darcy resistance term has been adopted for the numerical investigation into
both Darcy and non-Darcy regimes.

In the area of numerical methods there has, of late, been an increase of
interest in finite element schemes based on operator splitting methods. So in the
present work, attention is also focused on one such operator splitting scheme,
which renders itself to an efficient finite element code for the study of natural
convection heat transfer in porous media. Successful use of a semi-implicit

  .E
RaDa

A
=
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operator-splitting scheme has been reported in Ramaswamy et al.[21] and Satya
Sai[22] for convection problems in pure fluids (i.e. without a porous matrix).
This scheme has been extended in the present study to porous media. This
essential1y requires the incorporation of the Darcy resistance term as an
additional source term in the conservation equations for momenta.

In the following section, we present the governing equations for natural
convection heat transfer in porous media in axisymmetric geometries and
numerical methodology. This is followed by the results and discussion section.
In the first part of the results and discussion, we present the application of this
scheme to the Darcy regime. Two types of geometries, viz. annular cavities and
rectangular cavities are considered with a fairly wide range of parameters. Also,
two types of boundary conditions are considered. The first of these deals with a
cavity with isothermal vertical walls, while the horizontal walls are adiabatic.
The second deals with a cavity, one of the vertical walls of which is supplied
with a uniform heat flux while the other vertical wall is maintained at a uniform
temperature. The only reports which deal with the above two types of
boundary conditions in a very extensive manner are [7] and [8]. However, these
analyses were based on the Darcy flow model. So the results of this subsection
not only validate the present general model in the Darcy regime but also discuss
some important aspects of velocity and thermal fields. In addition, correlations
for the heat transfer coefficient for a wide range of parameters for the above two
geometries and boundary conditions are presented. The second part of the
results and discussion section deals with the non-Darcy regime, where the high
permeability of the porous medium results in significant differences in flow and
thermal fields as compared to the low permeability regime. Two different
boundary conditions are considered. However, the analyses of this part are
confined to plane cavities. This work is motivated by the absence of any study
documenting the effect of permeability on flow and thermal fields in a fluid
saturated porous medium in rectangular enclosures.

Governing equations and solution methodology
Considering X1 axis to represent the vertical direction and X2, the horizontal
direction, the non-dimensional equations for natural convection in a fluid
saturated porous medium in axisymmetric geometries can be written as
follows.

The continuity equation:

(1)
Momentum equation:

(2)
X2 momentum equation:
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(3)

Energy equation:

(4)
Here all the lengths are non-dimensionalized using an Lref, all the velocities by

Temperatures are non-dimensionalized according to the problem considered.
The following assumptions are employed while using the above equations:

(1) Fluid properties are constant, except for the density variations in
producing the buoyancy force.

(2) Dispersion effects and channelling effects are neglected in the porous
medium.

(3) Fluid and porous media are combined and treated as a homogeneous
medium.

(3) Effective thermal conductivity (km) of the solid-fluid mixture is measured
for the combination.

(5) Porous medium is assumed to be isotropic.

(6) Brinkman viscosity is assumed to be same as fluid viscosity for
convenience (but in general they are only approximately equal).

The numerical scheme is based on a semi-implicit operator splitting (or time-
stepping) algorithm and is similar in structure to Chorin’s[23] projection scheme
which was originally developed in a finite difference context for solving the
time-dependent Navier-Stokes equations. Briefly, the solution is advanced in
four stages at each time-step. They are:

(1) calculation of fictitious (or pseudo) velocities from the momenta
equations by dropping the pressure terms;

(2) evaluation of pressure from a pressure Poisson equation;
(3) correction of pseudo velocities to obtain velocities at the next time-step;

and
(4) finally, calculation of temperature field from the velocity field obtained

above.
One significant aspect of the present scheme is that a second order Adams-
Bashforth scheme is used for advection terms, while the diffusion terms are
treated in an implicit manner. Various advantages of the present scheme, vis-à-
vis the explicit scheme, have been discussed in [21] and [22] for forced

using ,  pressure by using  and time by 
α ρα α

L L Lref ref ref

2

2 2
.
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convection problems in pure fluids and for natural convection problems in pure
fluids, respectively. Galerkin finite element technique with linear triangular
elements for domain discretization has been used to arrive at the following
algebraic equations.

Fictitious velocity step:

(5)

(6)

Pressure Poisson equation:

(7)

Velocity correction:

(8)

(9)

Temperature calculation:

(10)

Various terms in the above equations are:
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Here dΩ = 2πX2 dX1 dX2; Ω and Γ denote integration over the computational
domain (Ω) and the boundary (Γ) respectively; η denotes the outward drawn
normal to the boundary; Ni, Nj, etc., refer to the shape functions associated with
nodes i, j, etc. respectively; summation over various nodes is implied on the
repeated index k(k = 1 to 3); a superscript U1, U2, P or T refers to matrices
associated with U1, U2, P or T respectively; MD is the diagonalized mass matrix;
A is the advection matrix; KU1, KU2, KT are diffusion matrices; KP is the
pressure stiffness matrix; FU1, FU2, FP, RU1 and RU2 are matrices on the right
side of equations; G refers to the buoyancy term and Q refers to the Darcy
resistance term.

Results and discussion
Investigations in the Darcy regime
A non-uniform, graded mesh of size 39 × 39 nodes with linear triangular
elements has been used for all the cases considered. The mesh has been found
to be adequate for the present work on the basis of a preliminary study on grid
convergence. The details of this study are not presented here. Also in this part
of the paper a Darcy number (Da) of 5 × 10–7 has been used, so that the
investigations lie in the Darcy regime (or low permeability regime). The results,
with appropriate boundary conditions, are presented in the subsequent sub-
sections.

Uniform wall temperature cases. Figure 1 shows the geometry and boundary
conditions for this case. The figure represents an axisymmetric annulus of
inner radius ri and outer radius ro. The inner (hot) wall is maintained at a
uniform temperature T

–
i, while the outer(cold) wall is maintained at temperature

T
–

o. The two horizontal walls are assumed to be insulated. The same geometry
represents a rectangular cavity for very large values of ri and ro. In this case the
radius ratio nearly becomes equal to 1. Temperature non-dimensionalization is
done as

(11)

As indicated earlier, the only exhaustive study of this geometry was made in [8]
on the basis of Darcy law. So it is proposed to carry out a similar study with the
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present model for a wide range of aspect ratios (A) and radius ratios (κ). The
range of parameters investigated is given below:

• aspect ratio (A) : 1, 2, 5, 10;
• radius ratio (κ) : 1, 2, 11, 16;
• Darcy number (Da) : 5 × 10–7;
• modified Rayleigh number (Ra

––
)

(Ra
––

= RaDa) : 100, 500, 1000, 2000, 5000.
Figure 2 shows the variation of the non-dimensional vertical component of
velocity (U1) along the horizontal mid-plane of a square cavity for different
modified Rayleigh numbers (Ra

––
). While the no slip condition prevails on the

wall, very near to the wall the U1 velocity attains a peak and then drops to
almost zero in the core of the medium. This is in contrast with natural
convection in a cavity with a pure fluid, in which case, the velocity peak is seen
slightly away from the wall. For a porous medium, as a result of strong
conductive effects, the velocities are confined to a very narrow region near the
wall. This figure also confirms the agreement between the present model and
Darcy flow model for the low permeability regime. According to Darcy law,
velocity slip is permitted on the wall and the velocity attains a peak on the wall
itself. In Figure 2 also the velocity peak is seen very close to the wall. Figure 3
brings out the effect of aspect ratio (A) and radius ratio (κ) on U1 along the same
plane as considered earlier. As A increases, the velocity peak increases, though
only slightly. But the symmetry of velocity profile observed for a plane cavity
(Figure 2) is not seen in Figure 3. U1 velocity near the hot wall would be much
higher than near the cold wall. A similar effect was observed for natural

Figure 1.
Geometry and boundary
conditions for constant
wall temperature
problem
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Figure 2.
Variation of vertical

component of velocity
along horizontal mid-

plane of a square cavity
for different modified

Rayleigh numbers
(A = 1, κ = 1)

Figure 3.
Variation of vertical

component of velocity
along horizontal mid-

plane of the annular
cavity for different
aspect ratios (Ra

––
=

2,000, κ = 26)
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convection in an annular enclosure filled with a pure fluid[22]. A stream of fluid
which convects upwards along the hot wall descends along the cold wall.
However, the area available near the hot wall is less than that near the cold wall.
This results in an increase in velocity near the hot wall to preserve continuity.
Figure 4 shows temperature contours along the horizontal mid-plane for
different radius ratio (κ ). In all these cases, A is taken as 1. The effect on
temperature profiles is similar to that on a U1 field. For a fixed κ , as Ra

––

increases, the effect of convection becomes more and more predominant,
resulting in thinner boundary layers near the hot wall. For κ = 1, which
represents a plane cavity, the core of the porous medium is at the mean
temperature and the temperature profiles are symmetric. However, as κ

Figure 4.
Variation of
temperature along
horizontal mid-plane of
the annular cavity of
aspect ratio 1 for
different Rayleigh
numbers (a) κ = 1,
(b) κ = 2, (c) κ = 11,
(d) κ = 26
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increases, the effect of curvature comes into picture. Once again, this effect is
similar to that which has been observed for pure fluids[22]. Temperature drops
down near the hot wall and the core temperature will be less than for a plane
cavity. This drop in temperature increases with κ. Figure 5 shows the effect of
A on the temperature plots for κ = 1. For higher A, the core width is seen to be
smaller. This shows that conduction effects become predominant as A
increases.

Figures 6 and 7 show the streamlines and isotherms for a square cavity (A =
1) with κ = 1 and 11 respectively. Similar observations as were made by earlier
investigations based on Darcy law[8] could be made. For a fixed Ra

––
as κ

increases to 11, the flow field shifts to the upper right corner, the shift becoming
more predominant at higher Ra

––
. It was observed in [8] that no multi-cellular

flow is visible even at higher Ra
––

. However, in the present results, multi-cellular
flow pattern is observed at Ra

––
= 5,000 for κ = 1; but the same is not observed as

κ increases to 11. Also from the streamline pattern, we observe that for a
particular κ as Ra

––
increases, the orientation of the streamlines rotates in the

clockwise direction. The greater boundary layer growth on the hot wall at
higher Ra

––
tends to rotate the core structure in the clockwise direction. Also from

the isothermal patterns in Figures 6 and 7, we find that as κ increases for a
given Ra

––
, the isotherms shift more towards the hot wall and, once again, this

shift becomes more predominant at higher Ra
––

. This results in a destruction of

Figure 5.
Variation of

temperature along
horizontal mid-plane of

the annular cavity for
different aspect ratios

(Ra
––

= 2,000, κ = 1)
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Figure 6.
Streamlines (left) and
isotherms (right) for an
annular enclosure,
A = 1, κ = 1
(a) Ra

––
= 100,

(b) Ra
––

= 1,000,
(c) Ra

––
= 5,000
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Figure 7.
Streamlines (left) and

isotherms (right) for an
annular enclosure,

A = 1, κ = 11
(a) Ra

––
= 100,

(b) Ra
––

= 1,000,
(c) Ra

––
= 5,000
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the symmetry of isothermal pattern and in turn results in a rapid rise in
temperature gradient near the hot wall and, hence, the heat transfer coefficient.
The local Nusselt number on the hot wall is given by

(12)
Figure 8 shows the influence of radius ratio (κ) on local Nusselt number along
the hot wall (Nui) for different aspect ratios (A). In general, as κ increases, Nui
also increases. This is a result of the effect of curvature on the flow and

Figure 8.
Variation of local
Nusselt number along
hot wall of a plane
cavity for Ra

––
= 2,000,

(a) A = 1, (b) A = 2,
(c) A = 5, (d) A = 10
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temperature field as discussed earlier. Figure 9 shows the variation of average
Nusselt number Nui

–––
along the hot wall with κ for Ra

––
= 100, 500 and 2,000

respectively, with A as a parameter. For Ra
––

= 100, the slope of ln(Nui
–––

) versus
ln(κ–) curve is almost constant for the whole range of aspect ratios. However, as
Ra
––

increases, the slope of the curves changes at approximately κ = 2. This effect
is more pronounced for A = 1 and at higher Ra

––
. This result is in contrast with

the findings of Prasad and Kulacki[8]. According to [8] the slope changes at
κ = 5.

To check the validity of present results, an annular cavity of κ = 5.338 has
been considered, for which experimental and numerical results are available
[24]. Figure 10 shows Nui

–––
plotted against the modified Rayleigh number Ra

––
.

While the dashed lines show the experimental results of Prasad and
Kulocki[24], the dotted lines show their own results obtained numerically using
the FDM on the basis of Darcy law. The present results show much better
comparison with the experimental results than their own numerical results. A
similar comparison with some earlier investigations is shown in Figure 11 for a
rectangular cavity of A = 10. The experimental results of Seki et al.[25], the
boundary-integral solutions of Walker and Homsy[3] and the numerical results
of Prasad and Kulacki[8] are plotted along with the present results. Up to Ra

––
=

3,000, the present results show much better agreement with the experimental
correlation of Seki et al.[25] than do the other two. However, at Ra

––
> about 3,000,

the present predictions are poorer. Based on the results obtained, correlations
have been proposed for annular enclosures of aspect ratio 1 and those with
aspect ratios ≥ 2. These are:

(13)
with a coefficient of correlation 0.991.

(14)
with a coefficient of correlation 0.988.

Uniform wall heat flux cases. This subsection of results deals with a rec-
tangular cavity with one of the vertical walls maintained at a uniform heat flux
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Figure 9.
Variation of Nu––

i along
hot wall of cavity with
radius ratio for different
aspect ratios
(a) Ra

––
= 100,

(b) Ra
––

= 500,
(c) Ra

––
= 2,000
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(q), while the other vertical wall loses heat at a uniform temperature (To
––

). This
represents a more realistic case of a porous system than the earlier one and
finds applications in insulation systems with solar radiation incident on one of
the sides. However, as mentioned earlier, the numerical results of [7] were the
only ones available in the literature that made use of this type of boundary
conditions. Figure 12 shows the geometry and boundary conditions for this 
problem. Temperature is non-dimensionalized as below:

(15)

The range of parameters investigated is given below:

• aspect ratio (A) : 1, 2, 5, 10

• radius ratio (κ) : 1

• Darcy number (Da) : 5 × 10–7

• modified Rayleigh number Ra*
(Ra* = RaDa) : 100, 200, 500, 1000, 2000, 5000.

Figure 13 shows the non-dimensional temperature (T) along the hot wall of a
square cavity for different Ra*. The slope of the temperature profile is found to
be decreasing as Ra* increases and the temperature profile tends to a uniform

Figure 10.
Comparison of Nu––

i
along hot wall of cavity

with experimental
results, k = 5.338 and

A = 1
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profile at a very high Ra*. At higher Ra*, owing to higher strength of convective
currents along the hot wall, the temperature becomes more uniform. Figure 14
shows the variation of local Nusselt number (Nu) along the hot wall for different
Ra*. Nu is calculated as

(16)

These trends are in good agreement with those reported in [7]. The effect of
aspect ratio (A) on temperature and local Nusselt number along the hot wall is
brought out in Figures 15 and 16 respectively. Finally, to validate the present
results a comparison has been made between the present results and those in
Prasad and Kulacki[7] and this is shown in Figure 17. The present results are in
excellent agreement with [7]. Similar to the constant wall temperature case, in
this section correlations also are proposed over a range of Ra* from 100 to 5,000
and A = 1 and 2 to 10. These correlations are:

(17)

with a coefficient of correlation 0.999

Figure 11.
Comparison of present
results with earlier
investigations, A = 10,
κ = 1
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Figure 12.
Geometry and boundary

conditions for constant
wall heat flux problem

Figure 13.
Variation of

temperature along hot
wall of a square cavity

for different Ra*
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Figure 14.
Variation of Nu along
hot wall of a square
cavity for different Ra*

Figure 15.
Effect of aspect ratio on
temperature along hot
wall of a square cavity
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Figure 16.
Effect of aspect ratio on

Nu along hot wall of a
square cavity

Figure 17.
Comparison of Nu–– of the

present study with
earlier numerical

investigations
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(18)

with a coefficient of correlation 0.999.

Investigations in a non-Darcy regime
In this part the present scheme is applied in a high permeability regime where
Darcy law becomes questionable. As in the previous section, a non-uniform,
graded mesh of size 39 × 39 nodes with linear triangular elements has been used
for all the computations. Two types of boundary conditions considered above
are used. However, only rectangular cavities are considered.

Underlying philosophy of present work. In all the previous studies, while
providing correlations for Nu

––
, the combined parameter called modified

Rayleigh number Ra
––

(or Ra*) = RaDa has been used. In other words, the
significance of Ra and Da has not been brought out separately in the
correlations. For example, for a square cavity with side walls subjected to
uniform temperatures, Nu

––
is of the form

(19)

However, alternatively, we could write

(20)

which can be reorganized as

(21)

If Darcy law is valid, m would be equal to n and Nu
––

would depend solely on Ra
––

.
When a plot is drawn of ln(Nu

––
) versus ln(Da) for a particular Ra, it gives a

straight line parallel to the axis on which ln(Da) is taken. However, when
permeability is high, it exhibits a straight line behaviour in the region in which
Darcy law holds good and changes its slope where the law does not apply. This
type of plot was given earlier by Vasseur et al.[14] for shallow enclosures and by
Lage[17] who used a Brinkman-Forchheimer formulation. The present
approach is similar to theirs, but their studies do not suggest any correlations
with Ra and Da as separate parameters. In the present work, for the two types
of boundary conditions considered, correlations are proposed for a square
cavity. Finally, an attempt is also made to bring out qualitatively the effect of
aspect ratio (A) on heat transfer coefficient as Da changes.

Uniform wall temperature cases. Figure 1 shows the geometry and boundary
conditions employed in this section. Retaining the same notations as before, the
range of parameters investigated is as below:
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• aspect ratio (A) : 1, 2, 5;
• radius ratio (κ) : 1;
• Darcy number (Da) : 5 × 10–7, 5 × 10–6, 5 × 10–5, 5 × 10–4,

5 × 10–3, 5 × 10–2, 5 × 10–2;
• modified Rayleigh number
(Ra
––

= RaDa) : 10, 50, 100, 500, 1000, 2000, 4000.
The effect of permeability on the velocity field is shown in Figure 18 for Ra

––
=

500 and 4,000 respectively. These figures show the vertical velocity profiles
along the mid-horizontal plane of a square cavity. For Da = 5 × 10–7, which
indicates low permeability, the velocity reaches a peak very near to the hot wall
and drops down to almost zero inside the core. This is in conformity with the
Darcy law predictions in which a slip is allowed on the wall. As Da increases to
5 × 10–3, the velocity profile resembles more that in a pure fluid filled cavity.
There is a clear boundary layer development. Also, the velocity peak shifts
away from the wall and its magnitude decreases. This is so because, for a fixed
Ra
––

, as Da increases, Ra should decrease proportionately. It is Ra which is a
measure of buoyancy force, that decides the velocity maximum and, hence, for
higher Da, the magnitude of velocity peak is reduced. Also it is observed that
for higher Da, somewhere inside the core, the vertical velocity is greater than
that for a lower Da. For higher Da, owing to higher viscous forces, the vorticity
diffuses through to a greater extent inside the cavity and, hence, a higher
velocity is observed inside the core. For Ra

––
= 4,000 (Figure 18b), the velocity

peaks are much higher than for Ra
––

= 500 for the same Da. Also, the boundary
layers are much thinner than for Ra

––
= 500. This is true as the boundary layers

become thinner with increasing buoyancy force.
Similarly, the effect of Da on temperature profiles along the same plane is

shown in Figure 19 for Ra
––

= 500 and 4,000 respectively. The differences in the
temperature profiles as Da changes could be seen more clearly for Ra

––
= 4,000

than for 500. It can be inferred that heat diffuses to a lesser extent for lower Da

Figure 18.
Variation of non-

dimensional vertical
velocity along the

centre-line of a square
cavity with Da as a

parameter (a) Ra–– = 500,
(b) Ra–– = 4,000
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than for higher Da. Also, as Da increases, the temperature profiles start
exhibiting inversions (for Ra

––
= 4,000). These inversions are responsible for the

secondary cells normally observed in cavities filled with pure fluids. Also the
temperature profiles do not show significant differences for Da = 5 × 10–7 and 5
× 10–5. This shows that Darcy law could be safely used for porous medium
predictions up to Da = 5 × 10–5.

Figure 20 shows the variation of local Nusselt number along the hot wall of
the cavity for Ra

––
= 500 and 4,000 with Da as a parameter. Here also, we find that

Nu is the same for a large portion of the wall for Da = 5 × 10–7 and 5 × 10–5. Only
near the starting corner, is there a significant difference. The local Nusselt
number depends on the thickness of thermal boundary layer. Since, for a fixed
Ra
––

, a lower Da implies a higher Ra, the boundary layer thickness will be smaller
for lower Da than for higher Da. Another important observation could be made
with regard to Nu for different Das. Even for Da = 5 × 10–3, the local Nusselt
number beyond X1 = 0.70 is the same as that for Da = 5 × 10–7. So the effect of
permeability is negligible as far as Nu is concerned beyond X1 = 0.70. This is
true for both low Ra

––
and high Ra

––
. Figure 21 shows the variation of average

Nusselt number (Nu
––

) with Rayleigh number (Ra), with Da as a parameter. This
plot is similar to that obtained by Chan et al.[10]. At low Da if one considers a
fixed Nu

––
, Ra increases by the same power as Da decreases and vice versa. This

shows the validity of Darcy law. However, as we proceed to the high
permeability zone (Da > 5 × 10–5), this relation does not seem to be so simple.
This can be better visualized from Figure 22 in which Nu

––
is plotted against Da.

For different Ra
––

, the limit of Darcy regime appears to be different, the regime
being reduced as Ra

––
increases. For Ra

––
as low as 10, even at a Da as high as 5 ×

10–2, the Darcy law is valid. But at Ra
–– ≥ 500, this range is limited to less than 5

× 10–5. Thereafter Nu
––

drastically reduces as Da increases. An important feature
is that for Ra

–– ≥ 500, even in the non-Darcy regime, the ln(Nu
––

) versus ln(Da)
curves show almost linear behaviour.

Figure 19.
Variation of non-
dimensional
temperature along the
centre-line of a square
vavity with Da as a
parameter (a) Ra–– = 500,
(b) Ra–– = 4,000
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In the literature available so far, no correlations have been proposed for porous
media in a non-Darcy regime without combining Ra and Da as a single
parameter (Ra

––
). From Figure 22, it is seen that even though Darcy limits

changes for different Ra
––

, approximately for Ra
––

> 500 and Da ≥ 5 × 10–5 a non-
Darcy regime can be assumed to prevail in a square cavity with isothermal side
walls. Also within the non-Darcy regime ln(Nu

––
) versus ln(Da) curves are almost

linear and hence the relation between Nu
––

and Da can be treated by means of a
simple power law. Hence, based on the numerical results generated for a square
cavity, the following correlation is suggested.

Figure 20.
Variation of local

Nusselt number along
hot wall of a square
cavity with Da as a

parameter (a) Ra–– = 500,
(b) Ra–– = 4,000

Figure 21.
Variation of average

Nusselt number along
hot wall of a square
cavity for different
Rayleigh numbers
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(22)
with a coefficient of correlation 0.989. Reorganizing equation (22), we get

(23)

Comparing equation (23) with the corresponding correlation above for a Darcy
regime, one can infer that in a Darcy regime, Nu

––
is independent of Da, while in

a non-Darcy regime Nu
––

varies inversely as Da0.21.
Uniform wall heat flux cases. Figure 12 shows the geometry and boundary

conditions for this subsection. The range of parameters investigated are:
• aspect ratio (A) : 1, 5, 10;
• radius ratio (κ) : 1;
• Darcy number (Da) : 5 × 10–7, 5 × 10–6, 5 × 10–5, 5 × 10–3,

5 × 10–2;
• modified Rayleigh number
(Ra* = RaDa) : 10, 100, 1000, 5000.

Figure 22.
Average Nusselt
number versus Darcy
number plots for
different Ra–– (aspect
ratio = 1)
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Figure 23 shows the variation of non-dimensional temperature along the hot
wall of a square cavity for Ra* = 100 and 5,000 for different Darcy numbers. For
fixed Ra* an increase in Da means a decrease in Ra and hence the heat flux on
the wall. This, in turn, means a higher non-dimensional temperature on the wall
(see equation (15) for temperature non-dimensionalization). Similar to the case
of enclosures with constant wall temperatures, here also the effect of Da
becomes significant only above Da = 5 × 10–5. Figure 24 shows the local Nusselt
number variation along the hot wall of a square cavity for Ra* = 100 and 5,000.
Unlike in the constant wall temperatures case, the local Nusselt number here
differs greatly for different Da. It may be recalled that in the former case for X1
> 0.70, there is no significant difference in the Nusselt number distribution for
the whole range of Da investigated. On the other hand, in the present case, it is
only in the upper half of the cavity height that significant change in the local
Nusselt number is seen as Da changes. Once again, one finds a very small
difference in the Nusselt number distribution between Da = 5 × 10–5 and 5 ×
10–7. The variation of average Nusselt number Nu

––
along the hot wall with Da is

plotted in Figure 25 for different Ra*. Similar observations to those made in the
constant wall temperatures case could be made. The non-Darcy regime is
reduced as Ra* increases. The somewhat incomplete curve for Ra* = 5,000 is
due to the fact that difficulties were experienced while obtaining a numerical
solution for the case of Ra* = 5,000 and Da = 5 × 10–2. For the constant wall heat
flux case, in the non-Darcy regime the slope of ln(Nu

––
) versus ln(Da) curves is not

as marked as it is for the constant wall temperature case. Based on the
numerical results for a square cavity, the following correlation is proposed for
Nu
––

:

Figure 23.
Variation of non-

dimensional
temperature along hot
wall of a square cavity

with Da as a parameter
(constant heat flux case)

(a) Ra––* = 100,
(b) Ra––* = 5,000
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with a coefficient of correlation 0.991. Reorganizing equation (24) we obtain,

(25)
This shows that the dependence of Nu

––
on Da is much weaker for the constant

wall heat flux case than for the constant wall temperature case (it may be
recalled that the corresponding exponent for the latter is –0.21). This can also
be inferred from an examination of Figures 22 and 25 together. The curves in
Figure 22 are much steeper in the non-Darcy regime than the curves in Figure
25.

Aspect ratio effects for the two types of boundary conditions. So far all the
results presented have been confined to a square cavity (A = 1). In this section,
we present a qualitative assessment of the effect of aspect ratio (A) in a non-
Darcy regime for both types of boundary conditions considered earlier. The
influence of A on the extent of the Darcy regime is shown in Figure 26 for the
constant wall temperature case. In this figure Nu

––
is plotted against Da for Ra

––
=

500 and 2,000 and for A = 1, 2 and 5. While at low Da, the solutions could be
obtained even for  Ra

––
= 4,000, convergence problems are experienced at higher

Ra
––

and higher Da for A = 2 and 5.

Figure 24.
Variation of local
Nusselt number along
hot wall of a square
cavity with Da as a
parameter (constant
heat flux case)
(a) Ra––* = 100,
(b) Ra––* = 5,000



Finite element
analysis of heat

transfer

395

Figure 25.
Average Nusselt

number versus Darcy
number plots for

different Ra* (aspect
ratio = 1)

Figure 26.
Effect of aspect ratio on

Nu–– versus Da plots
(constant wall

temperatures case)
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So the present results are confined to a maximum Ra
––

= 2,000 for A = 2 and 5.
From this Figure, we observe that aspect ratio significantly affects the non-
Darcy behaviour. However, the Darcy number at which the porous medium
starts deviating from Darcy behaviour seems to be almost the same for different
aspect ratios. But the rate at which Nu

––
decreases in a non-Darcy regime is

affected by A. For example, considering Ra
––

= 500, for A = 1, in a non-Darcy
regime, Nu

––
drops down much faster than for A = 5. As a result, at some Da, Nu

––

for A = 1 even becomes equal to that for A = 5. Similarly for Ra
––

= 2,000, Nu
––

for
A = 1 comes closer to Nu

––
for A = 2 and 5 at higher Da. This shows that the

dependence of Nu
––

on A changes as the permeability changes. At a very low Da
of the order of 5 × 10–7, where Darcy law holds good, Nu

––
depends on A as

(26)

as given by the correlation proposed above (see equation (14)). The same depen-
dence, according to Prasad and Kulacki[8] is given as

(27)

or 
depending on whether the radius ratio (κ) < 5 or ≥ 5. However, for pure liquids
in enclosures, various experimental investigations (see [26]) suggested that Nu

––

varies as A–0.11 to A–0.20. So as Da increases, the porous medium behaves more
like a pure fluid (as has been evidenced from velocity and temperature profiles).
Hence the dependence of Nu

––
on A becomes weaker. This can clearly be seen in

Figure 27 in which Nu
––

is plotted against A for Ra
––

= 500 and 2,000 with Da as a
parameter. Both for Ra

––
= 500 and 2,000, as Da decreases, the slopes of  Nu

––

versus A curves increase. Figures 28 and 29 show corresponding plots for
constant wall heat flux case. The curves of A = 1 in Figure 28 drop down much
faster than those for A = 5 and 10. Also from Figure 29, which shows Nu

––
versus

A plots for Ra* = 100 and 1,000, similar observations as made for the constant
wall temperatures case (in Figure 27) can be made. In a low Darcy regime the
curves are steeper, which shows that the effect of aspect ratio is significant. For
high Da, the plots are almost flat, indicating that the dependence of Nu

––
on A is

very weak.

Conclusions
The finite element scheme for natural convection heat transfer in porous media
developed on the basis of a model that includes both the inertia terms and
Brinkman extension has been applied to vertical enclosures in both low
permeability (Darcy) and high permeability (non-Darcy) regimes. In Darcy
regimes, in the case of annular cavities with constant wall temperatures, the
core is observed to be rotating in the streamwise direction. Also, multi-cellular
flow pattern has been observed for high Ra

––
, for an aspect ratio of 1. However,

this is seen to die down as radius ratio increases. Also, the multi-cellular flow
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pattern is not as strong as in the case of pure fluids. This can be concluded from
the fact that the isotherms for porous media do not exhibit a perceptible S-
shaped pattern as do the non-porous fluids. The S-shaped profiles are a result of
the temperature of the fluid outside the boundary layer being more than that of
the fluid at a corresponding point inside the boundary layer. This results in a
reversal of the direction of the movement of the fluid particles which, in turn,

Figure 27.
Average Nusselt

number versus aspect
ratio plots with Da as a

parameter (constant
wall temperature case)

(a) Ra–– = 500,
(b) Ra–– = 2,000
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leads to cells rotating in the counter direction. In porous media, even though the
S-shaped pattern is not conspicuous, at high Ra

––
the multi-cellular pattern is

seen. New correlations have been presented over a wide range of radius ratios (l
≤ κ ≤ 26) separately for cavities with A = 1 and those with A ≥ 2. These could
be used with a fair degree of accuracy over the range of Ra

––
and κ investigated.

In the case of constant wall heat flux condition, correlations have been proposed
for plane cavities with A = 1 and those with A ≥ 2 separately. Equally
interesting observations have been made in the non-Darcy regime. Here the
velocity field, temperature field and the heat transfer coefficients have been
examined in a range of permeability where Darcy law fails to yield accurate
results. The phenomenon of the vertical velocity peak shifting away from the
wall has been observed as Da increases. Temperature inversions have been
observed for higher Ra

––
with higher Da. Variations in local Nusselt number have

been noticed as Da changes. The effect of permeability on Nu
––

has been shown
for a square cavity for different Ra

––
and Ra*. Significant differences have been

noticed in Nu
––

behaviour with Da for the two types of boundary conditions
considered. Correlations have been proposed for these two cases without
combining Ra and Da as a single parameter. Finally, an attempt has been made
to bring out the influence of aspect ratio on heat transfer in rectangular cavity
for various permeabilities.

Figure 28.
Effect of aspect ratio on
Nu–– versus Da plots
(constant wall heat flux
case)
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